The Crystal Structure of the Misfit Layer Compound $(\mathrm{YS})_{1.23} \mathbf{N b S}_{\mathbf{2}}$

P. RABU, A. MEERSCHAUT, ${ }^{1}$ and J. ROUXEL
I.P.C.M., Laboratoire de Chimie des Solides UMR 110, 2, rue de la Houssinière, 44072 Nantes Cedex 03, France

and G. A. WIEGERS

Laboratory of Inorganic Chemistry, Materials Science Centre of the University, Nijenborgh 16, 9747 AG Groningen, The Netherlands

Received December 6, 1989

Abstract

Single crystal X-ray diffraction has shown that $(\mathrm{YS})_{1.23} \mathrm{NbS}_{2}$ is a misfit layer compound, built of alternately $\{100\}$ slices of rocksalt-type $|\mathrm{YS}|$ and sandwiches $\left|\mathrm{NbS}_{2}\right|$ with Nb in trigonal prisms of S , like Nb in $2 \mathrm{H}-\mathrm{NbS}_{2}$. The unit cell dimensions and space groups of the two sublattices $|\mathrm{YS}|$ and $\left|\mathrm{NbS}_{2}\right|$ in the composite crystal are $$
|\mathrm{YS}|: \mathrm{a}_{1}=5.393(1) \AA, b_{1}=5.658(8) \AA, c_{1}=22.284(8) \AA, \mathrm{S} . \mathrm{G} . \mathrm{F} m 2 m, Z=8
$$ $\left|\mathrm{NbS}_{2}\right|: a_{2}=3.322(1) \AA, b_{2}=5.662(4) \AA, c_{2}=11.13(2) \AA, \beta_{2}=92.62(6)^{\circ}, \mathrm{S} . \mathrm{G} . C 2, Z=2$. The lattice vectors \vec{a}_{1} and \vec{a}_{2}, \vec{b}_{1} and \vec{b}_{2} are parallel, $\left|\vec{a}_{1}\right|=\left|\vec{a}_{2}\right|,\left|\vec{b}_{1}\right|=\left|\vec{b}_{2}\right|$, while the stacking vectors \vec{c}_{1} and \vec{c}_{2} diverge slightly. Refinements converged to $R_{\mathrm{F}}=0.060$ for the $|\mathrm{YS}|$ part, $R_{\mathrm{F}}=0.075$ for the $\left|\mathrm{NbS}_{2}\right|$ part, and $R_{F}=0.063$ for the common part (0 kl reflections). Y is coordinated to S atoms on the vertices of a distorted square pyramid: $Y-S=2.764(4) \AA(1 \times), 2.763(19) \AA(1 \times), 2.996(19) \AA(1 \times), 2.752(1) \AA$ ($2 \times$). The $\left|\mathrm{NbS}_{2}\right|$ lattice shows disorder, the $\mathrm{Nb}-\mathrm{S}$ distances are $2.473(8) \AA$. © 1990 Academic Press, Inc.

Introduction

Single crystal X-ray diffraction of a number of compounds $(M S)_{n} T S_{2}(M=\mathrm{Sn}, \mathrm{Pb}$, Bi , rare earth metals; $T=\mathrm{Nb}, \mathrm{Ta} ; n=$ 1.08-1.17) has shown (1) that these compounds are misfit layer compounds, built of alternately $\{100\}$ slices of rocksalt-type $|M S|$ and sandwiches $\left|T S_{2}\right|$ with T in trigonal prisms of S. Misfit layer compounds are a subgroup of the class of composite crystals involving structures composed of subsystems, in our case $|M S|$ and $\left|T S_{2}\right|$. Each sub-

[^0]system has its own three-dimensional space group symmetry, but being mutually incommensuratc. The structure of the composite crystal can be described in higher dimensional space (2, 3). For these compounds mentioned above the two sublattices have centered (F and C) orthorhombic lattices, with corresponding axes a_{1} and a_{2}, b_{1} and b_{2}, c_{1} and c_{2} parallel (the subscripts 1 and 2 refer to the $|\mathrm{MS}|$ and $\left|\mathrm{TS}_{2}\right|$ lattice, respectively). The b axes are equal in length, while the c axes, perpendicular to the layers, are equal or differ by a factor of two. Along the a axes the lattices are incommensurate, the ratio a_{1} / a_{2} is around $\sqrt{3} ; a_{1}$ and b_{1} are approximately equal to the cell edge of $\mathrm{NaCl}-$
(b)

b
(c)

b

Fig. 1. The structures of three types of misfit layer compounds with centered orthorhombic lattices projected along the misfit axes; (a) The CC type, e.g., $(\mathrm{SnS})_{1.17} \mathrm{NbS}_{2}$; (b) the CF type e.g., (LaS$)_{1.14} \mathrm{NbS}_{2}$; (c) the FF type, e.g., (PbS$)_{1.13} \mathrm{TaS}_{2}$. Large circles represent sulfur atoms. In order to demonstrate the centering, T atoms (at $z=1 / 2$ for CC and at $z=1 / 4$ and $z=3 / 4$ for CF and FF) in the same plane parallel to (100) have the same symbol (+ or -); atoms ($1 / 2$) a_{1} apart have different symbols.
type $M S ; a_{2}$ and $b_{2}\left(b_{1}=b_{2}\right)$ correspond to a and $a \sqrt{3}$, respectively, of $2 \mathrm{H}-\mathrm{TS}_{2}$ (hexagonal, $a \approx 3.3 \AA$). Three structure types, differing in the way the layers of the same type are stacked, were found, viz., the CC type with both sublattices C-centered orthorhombic, $c_{1}=c_{2} \approx 11-12 \AA$; the CF type with the $|M S|$ lattice C-centered, $c_{1} \approx 11-12$ \AA, the $\left|\mathrm{TS}_{2}\right|$ lattice F-centered, $c_{2}=2 c_{1} \approx$ 22-24 \AA, and the FF type with both sublattices F centered, $c_{1}=c_{2} \approx 22-24 \AA$. The composition (viz., the value of n) is determined by the ratio a_{1} / a_{2} taking into account the number of formula units per unit cell of the two sublattices and the difference in lengths of the c axes. Projections along [100] are given in Fig. 1. In this paper the structure determination of (YS ${ }_{1.23} \mathrm{NbS}_{2}$ is described. The compound constitutes a new structure type among misfit layer compounds.

Experimental

$(\mathrm{YS})_{1.23} \mathrm{NbS}_{2}$ was prepared by heating a mixture of $\mathrm{Y}_{2} \mathrm{~S}_{3}$ and NbS_{2} in a $0.6: 1$ ratio at a temperature of $1000^{\circ} \mathrm{C}$ in a silica tube; the mixture was compacted before heating. Silica tube was protected by a thin carbon film deposited by cracking acetone. Niobium and yttrium sulfides were handled in a glove box under nitrogen. After 10 days at $1000^{\circ} \mathrm{C}$, products are intermediately crushed and reheated for 1 week. Single crystals in platelet shape are obtained using iodine as transport agent ($<5 \mathrm{mg} . \mathrm{cm}^{-3}$).

Weissenberg photographs ($h 0 l, h 1 l \ldots$ planes) gave evidence of two different symmetries, i.e., orthorhombic for $|\mathrm{YS}|$ and monoclinic for $\left|\mathrm{NbS}_{2}\right|$ parts. Lattice parameters were refined by least-square methods for separate parts (see Table I). The powder data were recorded on a cylindrical position-

TABLE I
InEL Powder Pattern (the 27
First Indexed Lines)

Type ${ }^{a}$	$d_{\text {obsd }}$	$d_{\text {calcd }}$	$\begin{gathered} \text { (YS) } \\ h k l \end{gathered}$	$\begin{gathered} \left(\mathrm{NbS}_{2}\right) \\ h k l \end{gathered}$	$I_{0} / I_{\text {obsd }}{ }^{\text {b }}$
c	11.23	$\left\{\begin{array}{l}11.15 \\ 11.15\end{array}\right.$	002	001	66
c	5.568	5.576		002	40
a	3.846	3.853	111		11
c	3.713	3.718	006		89
a	3.458	3.462	113		34
a	2.9309	2.9410	115		41
b	2.8634	2.8646		110	21
c	2.8340	$\left\{\begin{array}{l}2.8336 \\ 2.8341\end{array}\right.$	020		35
b	2.8009	2.8024		111	14
c	2.7875	2.7882	008		21
c, b	2.7449	$\left\{\begin{array}{l}2.7463 \\ 2.7475 \\ 2.7468\end{array}\right.$	022	111 021	52
a	2.6995	2.7024	200		28
a	2.6251	2.6264	202		29
b	2.5886	2.5917		112	13
c	2.5239	2.5265		022	18
a	2.4693	2.4704	117		12
b	2.5041	2.5066		112	23
b	2.3158	2.3155		$11 \overline{3}$	45
c	2.2519	$\left\{\begin{array}{l}2.2536 \\ 2.2538\end{array}\right.$	026	023	100
c, b	2.2275	$\left\{\begin{array}{l}2.2305 \\ 2.2254\end{array}\right.$		005 113	41
a	2.1856	2.1859	206		24
a	2.0918	2.0935	119		37
b	2.0384	2.0403		114	20
c	1.9868	1.9874 1.9876		024	8
a, b	1.9556	$\left\{\begin{array}{l}1.9556 \\ 1.9582\end{array}\right.$	220	114	40
a	1.9262	1.9262	222		21
c	1.8586	1.8588		006	39

Note. (INEL CUK $\alpha_{1}(\lambda=1.540598 \AA$). $|\mathrm{YS}|$ orthorhombic Fm2m: $a=5.4048(13) ; b=5.6671(12) ; c=$ 22.306(5); 37 HKL. $\left|\mathrm{NbS}_{2}\right|$ monoclinic $C 2 ; a=$ 3.3236(4); $b=5.6682(10) ; c=11.1653(15) ; \beta=$ 92.727(2); 43 HKL .
${ }^{a} a, b$, and c arc the reflections of the $|\mathrm{YS}|,\left|\mathrm{NbS}_{2}\right|$, and the common structure, respectively.
${ }^{b}$ Intensity normalized at 100 .

Fig. 2. Relation between the a and c axes of the two sublattices $\mathrm{YS}\left(a_{1}, c_{1}\right)$ and $\mathrm{NbS}_{2}\left(a_{2}, c_{2}\right)$.
sensitive detector (INEL apparatus) with $\mathrm{CuK} \alpha_{1}$ radiation $(\lambda=1.540598 \AA$) .

Structure Determination

A crystal of (YS) ${ }_{1.23} \mathrm{NbS}_{2}$ with dimensions $0.056 \times 0.2 \times 0.26 \mathrm{~mm}^{3}$ was mounted on an Enraf-Nonius CAD4 diffractometer. The unit cell dimensions, $a_{1}=5.393(1) \AA, b_{1}=$ 5.658(8) $\AA, c_{1}=22.284(8) \AA, \alpha_{1}=\beta_{1}=\gamma_{1}$ $=90^{\circ}$ and $a_{2}=3.322(1) \AA, b_{2}=5.662(4) \AA$, $c_{2}=11.13(2) \AA, \alpha_{2}=\gamma_{2}=90^{\circ}, \beta_{2}=$ $92.62(6)^{\circ}$, and preliminary intensity measurements showed that $|\mathrm{YS}|$ and $\left|\mathrm{NbS}_{2}\right|$ lattices are F-centered orthorhombic and Ccentered monoclinic, respectively. The a axes, a_{1} and a_{2}, and b axes, b_{1} and b_{2}, are parallel while the c axes diverge slightly, the angle between being $2.62^{\circ} ;\left|\overrightarrow{a_{1}}\right|=\left|\overrightarrow{a_{2}}\right|$, $\left|\overrightarrow{b_{1}}\right|=\left|\overrightarrow{b_{2}}\right|,(1 / 2)\left|\overrightarrow{c_{1}}\right|=\left|\overrightarrow{c_{2}}\right| \sin \beta_{2}$. In recipro-

Fig. 3. The reciprocal lattices of YS and NbS_{2} sublattices, a_{1}^{*}, c_{1}^{*} and a_{2}^{*}, c_{2}^{*}, respectively; $c_{2}^{*}=2 c_{1}^{*}$; a_{1}^{*} and a_{2}^{*} make an angle of $2.62^{\circ} ; c^{*}$ based on $c=$ 22.28 Å.
cal space, $\overrightarrow{b_{1}^{*}}$ and $\overrightarrow{b_{2}^{*}}, \overrightarrow{c_{1}^{*}}$ and $\overrightarrow{c_{2}^{*}}$ are parallel while $\overrightarrow{a_{1}^{*}}$ and $\overrightarrow{a_{2}^{*}}$ diverge. The relation between the unit cells is shown in Figs. 2 and 3. Measurements of a number of crystals showed identical results.

Data collection is summarized in Table II. An absorption correction was applied using the dimensions of the crystal platelet given above; the crystal was bounded by the (001 , 100 , and 010) faces, respectively. The linear absorption coefficient is $109 \mathrm{~cm}^{-1}$. Corrections for absorption, Lorentz, and polarization effects were applied using the En-raf-Nonius Structure Determination Package (SDP programs (4)), which was also used for structure refinements. Structure refinements were performed using $h_{1} k_{1} l_{1}$ and $h_{2} k_{2} l_{2}$ reflections for the $|\mathrm{YS}|$ and $\left|\mathrm{NbS}_{2}\right|$ parts, respectively, excluding in both cases the $0 k l$ reflections which are common for both sublattices; these reflections were used for the determination of the relative origin (y and z) of the two sublattices. Because of the incommensurate character it is not possible to fix common x coordinates. Approximate coordinates of the atoms were obtained by considering the structures of the misfit compounds already known. The
$|\mathrm{YS}|$ part refined smoothly to $r_{\mathrm{F}}=0.060, \omega R$ $=0.065$ for 186 reflections with $I \geq 3 \sigma(\mathrm{I})$, with Y and S on sites ($8 c$) of space group Fm 2 m . The y coordinate of Y was kept fixed at 0 (the space group has no center of symmetry; see Table III). Attempts to refine the $\left|\mathrm{NbS}_{2}\right|$ part in space group $C 2$ with Nb at ($2 a$) $=0,0,0$ (y kept at 0) and S at (4c), x $\approx 0, y \approx 1 / 3, z \approx 0.14$, were less successful ($R_{\mathrm{F}}=0.229$ with an isotropic refinement; if anisotropy was applied, β_{11} for both Nb and S atoms showed large negative values). The difference-Fourier synthesis showed peaks which were assigned to a $\left|\mathrm{NbS}_{2}\right|$ sandwich displaced with respect to the first by $\Delta x \approx$ $.15, \Delta y \approx .5, \Delta z \approx 0$. Refinements were performed with both sandwiches partially occupied, the total occupancy fixed to 1 . The second $\left|\mathrm{NbS}_{2}\right|$ sandwich ($\mathrm{Nb} 2, \mathrm{~S} 2$, and

TABLE II

(a) $|Y S|$ part

Crystal data
Orthorhombic symmetry S.G. Fm2m (42), $Z=8$ $a_{1}=5.393(1) \AA, b_{1}=5.658(8) \AA, c_{1}=22.284(8) \AA$ Data collection

Diffractometer	$:$ Enraf-Nonius CAD4
Radiation	$:$ MoK $\alpha(\lambda=0.71703 \AA)$
Monochromator	$:$ graphite
θ range :	$: 1.5-35^{\circ}$
scan $:$	$: \omega$ mode
$\Delta \omega:$	$: 1.00+0.35 \operatorname{tg} \theta$

(b) $\left|\mathrm{NbS}_{2}\right|$ part

Crystal data
Monoclinic symmetry S.G. $C 2, Z=2$
$a_{2}=3.322(1) \AA, b_{2}=5.662(4) \AA, c_{2}=11.13(2)$ $\AA, \beta_{2}=92.62(6)^{\circ}$
Data collection

Diffractometer	$:$ Enraf-Nonius CAD 4
Radiation	$:$ MoK $\alpha(\lambda=0.71703 \AA)$
Monochromator	$:$ graphite
θ range	$: 1.5-35^{\circ}$
Scan	$: \omega$ mode
$\Delta \omega$	$: 1.00+0.35 \operatorname{tg} \theta$

(c) Common part
S.G. Pm, $b=2.829\left(b_{1} / 2\right), c=11.142\left(c_{1} / 2\right)$

Conditions defined for $|\mathbf{Y S}|$ part

TABLE III
Atomic Coordinates and Thermal Parameters $\left(\AA^{2}\right)$ OF THE $|\mathrm{YS}|$ PART; $a_{1}=5.393(1) \AA, b_{1}=5.658(8)$ $\AA, c_{1}=22.284(8) \AA$, Space Group $F m 2 m$

Atom	Site	x	y	z
Y	(8c)	0	0.	0.3240(1)
S	(8c)	0	0.021 (2)	0.2001 (2)
	Anisotropic thermal parameter (\AA^{2})			
	U_{11}	U_{22}	U_{33}	U_{23}
Y	$0.0364(8)$	0.036(1)	0.0219 (7)	-0.007 (3)
S	0.032 (2)	0.019(2)	0.014 (2)	0.002 (5)

S3) was refined in the riding mode with the first sandwich (Nb 1 and S 1). Variables were x, y, z of Nb 2 and S 1 and the occupancies (which means that the absolute value of the coordinate differences of Nb 2 and S 2 and S 3 are kept equal to those of Nb 1 and S 1). Anisotropic temperature factors were refined for Nb 1 and Nb 2 , the S atoms were refined isotropically; see Table IV (where y coordinates of all atoms are shifted by $-0.124 / 2$ in agreement with the refinement for the common part-Table V), $R_{\mathrm{F}}=$ $0.075, \omega R=0.091$ for 229 reflections with I $\geq 3 \sigma(I)$.

The relative origin of the two sublattices (common y and z coordinates) was obtained from the 0 kl reflections of the $|\mathrm{YS}|$ part record. Since these reflections occur for $k-$ $2 n$ and $l=2 n$ in the unit mesh $b=5.658 \AA$, $c=22.284 \AA$, the axes describing the projection along the misfit [100] axes can be halved, viz., $b^{\prime}=2.829 \AA, c^{\prime}=11.142 \AA$. The symmetry of this projection is that of the two-dimensional plane group Pm ($m \perp$ c), the midplane of type $|\mathrm{YS}|$ double layer fixed at $z=1 / 2$ and Nb of $\left|\mathrm{NbS}_{2}\right|$ at $z=0$, which gives equal distances between alternate layers $|\mathrm{YS}|$ and $\left|\mathrm{NbS}_{2}\right|$. Refinements were performed in the space group $P m$ with y of Y fixed at 0 ; we have constrained the y and z coordinates of Y and S (viz. differences $0.042(2 \times 0.021)$ and $0.2478(2 \times$ 0.1239), respectively, as found from the $|\mathrm{YS}|$ refinement (see Table III)); we also constrained the y and z coordinates of Nb 1 and S1 (viz. differences $0.6720(2 \times 0.336)$ and 0.1422 , respectively, as found from the $\mid \mathrm{N}$ $\mathrm{bS}_{2} \mid$ refinement (see Table IV)). Variables were the y and z coordinates of one sublattice with respect to the other, and the occupancy of Y and S constraint to be equal. Isotropic temperature factors were taken into account. The refinement proceeded to $R_{\mathrm{F}}=0.063$ and $\omega R=0.071$ for 75 reflec-

TABLE IV
Atomic Coordinates and Isotropic Temperature Factors of S Atoms of the |NbS ${ }_{2} \mid$ Part: $a_{2}=3.322(1) \AA, b_{2}=5.662(4) \AA, c_{2}=11.13(2) \AA, \beta_{2}=92.62(6)^{\circ}$, Space Group $C 2$

Atom	Site	x	y	2	Occupancy	$B_{\text {eq }}, B_{\text {iso }} *\left(\AA^{2}\right)$
Nb1	(2a)	0	-0.062(-)	0	. 65	1.94 (4)
S1	(4c)	0.022 (1)	0.274(1)	0.1422(6)	. 65	2.07 (8)*
Nb 2	(4c)	0.151 (1)	0.459(1)	-0.0010(6)	. 175	2.8 (2)
S2	(4c)	0.173 (1)	$0.795(1)$	0.1411 (6)	. 175	2.0 (2)*
S3	(4c)	0.129 (1)	$0.795(1)$	-0.1432(6)	. 175	2.0 (2)*
	Anisotropic thermal parameters (\AA^{2})					
	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Nbl	.0214(9)	. 0121 (8)	$0.039(1)$. 0	$-.0082(7)$. 0
Nb2	. 032 (3)	. 010 (4)	0.064(6)	. 004 (2)	- . 019 (3)	.003(3)

TABLE V
Atomic Coordinates and Isotropic Temperature Factors of the Common Part, $b=2.829 \AA, c=11.142 \AA$

Atom	Site	x		z	$B\left(\AA^{2}\right)$	Occupancy
\mathbf{Y}	$(2 c)$	-	0	$0.6481(5)$	$2.3(1)$	0.56
S	$(2 c)$	-	0.042	0.4003	$1.8(2)$	0.56
Nb1	$(1 a)$	-	$-0.124(2)$	0.	$1.12(4)$	1.
S1	$(2 c)$	-	0.548	0.1422	$1.5(1)$	1.

tions with $I \geq \sigma(I)$. The occupancy of $|Y S|$ (0.56) is however much lower than expected (0.615) (refinements of occupancy were made step by step, 0.56 corresponding to the lowest R_{F} factor) (see Table V). It is also possible to deduce the occupancy from the experimental scale factors for $|\mathrm{YS}|,\left|\mathrm{NbS}_{2}\right|$, and the common reflections, $0.216,0.126$, and 0.124 . The ratio $0.126 / 0.216=0.584$ is somewhat larger than the ratio 0.56 from refinement of 0 kl . The discrepancy between the occupancy from the ratio of lengths of misfit axes (0.615) and the experimental ratio ($0.56-0.58$) is not easily explained. There are several possibilities: the effect of the mutual modulation of the subsystems is a decrease of the intensity of the main reflections and, since it is found that the $|M S|$ lattice is stronger modulated than the $\left|T \mathrm{~S}_{2}\right|$ lattice, the decrease in intensity is probably strongest for the $|\mathrm{YS}|$ lattice. A more sophisticated refinement program which combines data sets of all reflections, including the satellites, is needed to analyze this quantitatively. Another possibility is substitution of some $|\mathrm{YS}|$ double layers for $\left|\mathrm{NbS}_{2}\right|$ forming $\left|\mathrm{NbS}_{2}\right|$ pairs of sandwiches in the structure. It may be remarked that it is possible to prepare compounds $(M S)_{n}\left(T S_{2}\right)_{2}(5)$ in which $|M S|$ double layers alternate with two sandwiches $\left|T S_{2}\right|$ in an ordered way. A percentage of about 5% of substitution is sufficient to explain the observed occupancy. It is now possible to introduce the true y coordinates of the $\left|\mathrm{NbS}_{2}\right|$ unit with respect to Y of $|\mathrm{YS}|$ at $y=0$. These values are obtained by halv-
ing the y coordinate of Nb 1 in Table V ; the other y coordinates of Table IV are changed accordingly.

Discussion of the Structure

The structure is built of alternately double layers of $|\mathrm{YS}|$ and sandwiches $\left|\mathrm{NbS}_{2}\right|$. The formula (YS) ${ }_{1.23} \mathrm{NbS}_{2}$ is obtained from the ratio a_{1} / a_{2} and the number of formula units per cell in each of the two sublattices, $Z=$ 8 for $|\mathrm{YS}|$, space group $F m 2 m$, and $Z=$ 2 for $\left|\mathrm{NbS}_{2}\right|$, space group $C 2$, taking into account the difference in length of the c axes: $1.23=2 \times(3.322 / 5.393)$. The $|\mathrm{YS}|$ sublattice consists of double layers |YS| with their midplanes at $z=1 / 4$ and $z=3 / 4$. Double layers ($1 / 2$)c apart are displaced over ($1 / 2$) a (or equivalently ($1 / 2$) b with respect to each other. Each double layer is a distorted $\{100\}$ slice of rocksalt type $|\mathrm{YS}|$; the quadratic lattice of $|\mathrm{YS}|$ is distorted to rectangular while the Y atoms are protruding the planes of sulfur. The Y-Y ($3.908 \AA$) and $Y-S$ distances (Fig. 4) are close to those observed in the parent substance YS with rocksalt structure, $a=5.493 \AA(\mathrm{Y}-\mathrm{Y}=$ $3.884 \AA, Y-S=2.747 \AA(6))$. For compounds $(M S)_{n} T S_{2}$ studied so far the smallest value of the cell edge of the parent compound $M S$ is found for $|Y S|$. Concerning the distortion in the $a b$ plane of the $|\mathrm{YS}|$ sublattice of $(\mathrm{YS})_{1.23} \mathrm{NbS}_{2}$, the ratio b_{1} / a_{1} is the largest observed for misfit layer compounds considering that $b_{1}=b_{2}$ is approximately equal to $a \sqrt{3}$ of the parent substance 2 H -

FIG. 4. The YS double layer centered at $y=1 / 4$; (a) projected along [001], only upper-half shown; (b) projected along [100]. Small hatched circles are Y, large open circles S. (Distances in angstroms.)
$\mathrm{NbS}_{2}(\mathrm{a} \sqrt{3}=5.757 \AA)$. So b_{1} is elongated from 5.493 for solid YS to $5.658 \AA$ while h_{2} is compressed from $5.757 \AA$ for $2 \mathrm{H}-\mathrm{NbS}_{2}$ to

Fig. 5. Structure of (YS) $)_{1.23} \mathrm{NbS}_{2}$ projected along [010]. Small hatched circles, small open circles, and large open circles for Y, Nb, and S , respectively. Note: some of the displaced NbS_{2} sandwiches are shown (dashed); notice that the line which connects a "normal" NbS_{2} with the displaced $\mathrm{NbS}_{2}(1 / 2) c_{1}$ apart is perpendicular to a_{2}.
5.662 in the misfit layer compound. The a axis $\left(a_{2}\right)$ of the $\left|\mathrm{NbS}_{2}\right|$ lattice in $(\mathrm{YS})_{1.23} \mathrm{NbS}_{2}$ is almost equal to a of $2 \mathrm{H}-\mathrm{NbS}_{2}(a=3.324$ A (7)).

The $\left|\mathrm{NbS}_{2}\right|$ sandwiches in the complete structure are centered at $z=0$ and $z=$ $1 / 2$; both sandwiches are identical since the repeat distance along c is half that of the $|\mathrm{YS}|$ sublattice. Owing the deviation δ of the x coordinate of S 1 from $x=0$ (δ $=0.022$) and the deviation of β_{2} from 90°, the $\left|\mathrm{NbS}_{2}\right|$ sandwich is not distorted compared to $2 \mathrm{H}-\mathrm{NbS}_{2}$ (note 0.022×3.322 $\AA=0.073 \AA \cong 0.1422 \times 11.13\left|\cos \beta_{2}\right| \AA$ $=0.072 \AA$) as indicated in Fig. 5. A projection of the complete structure along the [100] axes of both sublattices is shown in Fig. 6. The $\mathrm{Nb}-\mathrm{S}$ distances in the trigonal prisms of S are $2.473(8) \AA$. It is further seen that the x coordinate of the "displaced" sandwich is such that $\mathrm{Nb} 2-\mathrm{S} 2$ and NbI -SI distances ($c_{2}=11.13 \AA$) apart are on top of each other which suggests that the disorder of the $\left|\mathrm{NbS}_{2}\right|$ lattice is due to a tendency to form a composite crystal with orthorhombic sublattices; (note 0.151 (the x coordinate of the displaced Nb) \times $3.322 \AA=0.50 \AA \approx\left|c_{2} \cos \beta_{2}\right|=0.509$ A).

As mentioned in the introduction, the symmetry of the composite crystals $(M S)_{n} T S_{2}$ could be described in $(3+1) D$ superspace. It is easily seen that the symme-

Fig. 6. Projection along [100]. Since the two sublattices have no common x coordinate, the relative position is arbitrary.
try of (YS) ${ }_{1.23} \mathrm{NbS}_{2}$ can also be described in $(3+1) D$ space; all reflections, including satellites due to the mutual modulation of the two sublattices, are given by four lattice vectors:

$$
S=H a_{1}^{*}+K b_{1}^{*}+L c_{1}^{*}+M a_{2}^{*}
$$

($H K L O$ are the $|M S|$ reflections, $O K L M$ the $\left|\mathrm{NbS}_{2}\right|$ reflections, while general reflections $H K L M$ are satellites). An extensive discussion of symmetry aspects is outside the scope of this paper.

In our study, satellites due to the mutual modulation were too weak to be observed. By not taking into account the modulation, the structure as determined is in fact an average structure.

Two factors are of importance considering the stability of $(\mathrm{YS})_{1.23} \mathrm{NbS}_{2}$. First the Y atoms at $y=0$ and $y=1 / 2$ (Table III) are
lying in groves formed by rows at $y \approx 0.27$ and $y \approx 0.77$ (Table IV) of sulfur of neighboring $\left|\mathrm{NbS}_{2}\right|$ sandwiches. In this way each Y atom is, beside the S atoms of the $|\mathrm{YS}|$ double layer, also coordinated to S of $\left|\mathrm{NbS}_{2}\right|$, the Y atoms being on the outside the planes of S of $|Y S|$. The number of coordinating S atoms of each Y atom is therefore seven or eight; the actual number depending on the position along the misfit axis. The second factor concerns electron transfer from the $|\mathrm{YS}|$ to the $\left|\mathrm{NbS}_{2}\right|$ part. Such a transfer was deduced from electrical transport and magnetic properties of $(\mathrm{LaS})_{1,14} \mathrm{NbS}_{2}$ and $(\mathrm{CeS})_{1.14} \mathrm{NbS}_{2}(8,9)$. Since La, Ce, and also Y prefer the trivalent state in $M S$ (note solid YS is represented by $\mathrm{Y}^{3+}\left(e^{-}\right) \mathrm{S}^{2-}$, one electron in a $3 d$ conduction band) it is obvious that electron transfer to the $4 d_{z}^{2}$ conduction band of the $\left|\mathrm{NbS}_{2}\right|$ part may occur in (YS) ${ }_{1.23} \mathrm{NbS}_{2}$.

Acknowledgment

We thank M. Maestro (Rhone-Poulenc Company) for providing us with $\mathrm{Y}_{2} \mathrm{~S}_{3}$ samples.

References

1. G. A. Wiegers, A. Meetsma, S. Van Smaalen, R. J. Hafinge, J. Wulff, Th. J. Zeinstra, J. L. de Boer, S. Kuypers, G. Van Tendeloo, J. Van Landuyt, S. Amelinckx, A. Meerschaut, P. Rabu, and J. Rouxel, Solid State Commun. 70(4), 409-414 (1989).
2. A. Janner and T. Janssen, Acta Crystallogr., Sed. A 36, 399-415 (1980).
3. S. Van Smafen, J. Phys. Condens. Matter 1(7), 2791-2800 (1989).
4. B. Frenz, "Enraf-Nonius Structure Determination package," Delft Univ. Press (1982).
5. A. Meerschaut, L. Guemas, C. Auriel, and J. Rouxel, Eur. J. Solid State Inorganic Chem., to be submitted.
6. H. Bergmann, "Gmelin Handbook of Inorganic Chemistry," Vol. 39, Part C7, Springer-Verlag, Heidelberg New York (1983).
7. W. G. Fisher and M. J. Sienko, Inorg. Chem. 19, 39-43 (1980).
8. A. Meerschaut, P. Rabu, and J. Rouxel, J. Solid State Chem. 78, 35-45 (1989).
9. G. A. Wiegers and R. J. Hangee, J. Phys. Condens. Matter 2, 455-463 (1990).

[^0]: ${ }^{1}$ To whom correspondence should be addressed.

